
MPI Datatype Marshalling: A Case Study in
Datatype Equivalence

Dries Kimpe1,2, David Goodell1, and Robert Ross1

1 Argonne National Laboratory, Argonne, IL 60439
2 University of Chicago, Chicago, IL 60637

{dkimpe,goodell,rross}@mcs.anl.gov

Abstract. MPI datatypes are a convenient abstraction for manipulating
complex data structures and are useful in a number of contexts. In some
cases, these descriptions need to be preserved on disk or communicated
between processes, such as when defining RMA windows. We propose
an extension to MPI that enables marshalling and unmarshalling MPI
datatypes in the spirit of MPI_Pack/MPI_Unpack. Issues in MPI datatype
equivalence are discussed in detail and an implementation of the new
interface outside of MPI is presented. The new marshalling interface
provides a mechanism for serializing all aspects of an MPI datatype:
the typemap, upper/lower bounds, name, contents/envelope information,
and attributes.

1 Introduction

Since its inception, MPI has provided datatypes to describe the location of data in
memory and files for communication and I/O. These datatypes are a flexible and
powerful abstraction, capable of efficiently expressing extremely sophisticated
data layouts. While MPI offers facilities to simply and efficiently transmit, store,
and retrieve data described by these datatypes, however, it does not provide any
direct mechanism to transmit the datatype description itself.

We originally set out to develop a library capable of marshalling MPI data-
types. We define marshalling to be the act of generating a representation of an
MPI datatype that can be used to recreate an “equivalent” datatype later, possi-
bly in another software context (such as another MPI process or a postprocessing
tool). Such functionality is useful in many cases, such as the following:

– Message logging for fault-tolerance support

– Self-describing archival storage

– Type visualization tools

– Argument checking for collective function invocations

– Implementing “one-sided” communication, where the target process does not
necessarily know the datatype that will be used

– Message or I/O tracing for replay in a tool or simulator.



When viewed in the abstract or from the perspective of a particular use
case, datatype marshalling appears to be a well-defined problem with a num-
ber of direct solutions. As we considered the problem from several different an-
gles, however, we consistently came up with different, sometimes incompatible,
requirements. These requirements stem from the lack of a clear definition for
“equivalent” MPI datatypes.

The rest of this paper is organized as follows. In Section 2 we discuss the
thorny issue of MPI datatype equivalence. In Section 3 we present the design
and implementation of our datatype marshalling library. In Section 4 we briefly
evaluate the time and space performance of our implementation. In Section 5 we
discuss related work, and our conclusions in Section 6.

2 MPI Datatype Equivalence

Pragmatically, two MPI datatypes might generally be considered equivalent
when one can be substituted for another in MPI operations. However, data-
types are characterized by several independent dimensions that may constitute
a concrete definition of equivalence.

The MPI standard [5] provides one definition for datatype equivalence (MPI-
2.2 §2.4):

Two datatypes are equivalent if they appear to have been created with
the same sequence of calls (and arguments) and thus have the same
typemap. Two equivalent datatypes do not necessarily have the same
cached attributes or the same names.

Capturing the extent of the type is critical in cases where a count ≥ 1 is
used. Section 4.1.7 states that MPI_Type_create_resized does the following:

Returns in newtype a handle to a new datatype that is identical to
oldtype, except that the lower bound of this new datatype is set to be
lb, and its upper bound is set to be lb + extent. Any previous lb and
ub markers are erased, and a new pair of lower bound and upper bound
markers are put in the positions indicated by the lb and extent argu-
ments.

If one sensibly interprets this as stating that MPI_Type_create_resized’s effect
is to insert MPI_LB and MPI_UB markers into the typemap,3 then the MPI standard
definition provides an adequate definition for point-to-point, collective, one-sided
(RMA), and I/O operations. If the typemaps match, then the MPI operations
will access the same data items.4

3 It is interesting that MPI_LB and MPI_UB, while deprecated for being error-prone to
use, are extremely helpful in understanding the equivalence of datatypes.

4 The implicit pad (ε) used in an MPI executable is intended to mimic the alignment
behavior of the compiler used. This can vary based on architecture, compiler, and
compiler flags, and it is not explicitly captured in the typemap.



1 MPI_Aint lb, extent;

2 MPI_Datatype A, B;

3 MPI_Type_vector(2, 1, 2, MPI_BYTE, &A);

4 MPI_Type_get_extent(A, &lb, &extent);

5 MPI_Type_create_resized(A, 0, extent+1, &B);

Listing 1. MPI Code to Create MPI Datatypes A and B

0 1 2

A0

3 4 5

A1

0 1 2 3

B0

4 5 6 7

B1

Fig. 1. A and B used in MPI_Send with count = 2. (shaded boxes indicate transmitted
bytes)

In explanation, consider two types, A and B, with identical typemaps but dif-
fering extents, EA and EB . The code to create these types is shown in Listing 1.
If MPI_Send is invoked with count = 2 and alternately with A and B, different
data will be sent (Figure 1). The typemap for B must incorporate the MPI_UB

defined by the resize.
We note that no facility for comparing datatypes is provided in the MPI

standard, as it is for comparing communicators (i.e., MPI_Comm_compare). This
omission complicates the construction of external libraries that would marshal
datatypes, as it is impossible to detect equivalent datatypes without dissecting
the datatype via the envelope and contents calls.

In many contexts, several additional characteristics besides the typemap may
determine the semantic equivalence of two types. These include the type names,
construction sequence, and attribute values.

2.1 Type Name Equivalence

The name associated with an MPI datatype may be changed by the MPI_Type_

set_name routine. This information is not considered in the MPI standard’s def-
inition of type equivalence. For example, a type used to represent the layout
of a dataset in a file may be named by that dataset’s name. In some cases, an
application or library may not consider two types to be equivalent unless the
types’ names are also equivalent.

2.2 Constructor Equivalence

The MPI-2 standard introduced two functions and a handful of constants that to-
gether provide a form of type introspection. The MPI_Type_get_envelope function



returns the “combiner” used to create the type. Combiner examples include MPI_

COMBINER_VECTOR, MPI_COMBINER_RESIZED, and MPI_COMBINER_NAMED, corresponding
to MPI_Type_vector, MPI_Type_create_resized, and a named predefined datatype
such as MPI_INT. The complementary function, MPI_Type_get_contents, returns
information sufficient to recreate the call to the combiner routine, such as the in-
put datatypes, counts, and indices. The MPI standard requires that “the actual
arguments used in the creation call for a datatype can be obtained,” including
zero-count arguments. This requirement goes beyond the MPI standard’s defini-
tion of equivalence, as elements with a zero count do not appear in the typemap
of the constructed datatype.

Other than a heavyweight, noncomposable scheme involving the MPI profil-
ing interface (PMPI_* functions), the envelope and contents routines are the only
available mechanisms for determining the make-up of an MPI datatype. Thus,
any external scheme for marshalling datatypes will use this interface.

2.3 Attribute Equivalence

MPI provides attributes to allow applications and libraries to attach process-
local information to communicator, window, and datatype objects. We limit our
discussion of attributes to datatypes. An attribute attached to a datatype ob-
ject is a (key,value) pair, with exactly one value for a given key. Keys are integer
values, allocated in a process-local context via MPI_Type_keyval_create and de-
allocated by MPI_Type_keyval_free. Attribute values are void pointers5 and can
be queried/set/deleted with the MPI_Type_{get,set,delete}_attr functions.

Creating a keyval both reserves a key for later use and associates a set of
function pointers with that key. The corresponding function pointer is invoked
by the MPI implementation when types are copied (via MPI_Type_dup) or deleted
(via MPI_Type_free) as well as when attributes themselves are explicitly replaced
or deleted. These function pointers are responsible for copying underlying at-
tribute values and cleaning up associated storage according to the semantics of
that attribute’s usage.

For example, the MPITypes library [8] uses attributes to cache high-perfor-
mance dataloop [9] representations of MPI datatypes on the datatypes them-
selves. This strategy allows the MPITypes library to avoid recomputing the
dataloop representation on every use. The dataloop information could be stored
externally, without the use of the attribute code, but the attribute system pro-
vides two advantages. First, if a type is duplicated via MPI_Type_dup, the dataloop
representation can be trivially copied, or shared and reference counted. Second,
the dataloop can be easily freed when the type is freed. Otherwise the MPITypes
library has no easy means to identify when a type is no longer in use; hence, it
must use an external caching scheme with bounded size and an eviction policy,
or memory usage will grow without bound.

Two MPI datatypes that are equivalent modulo their attributes may or may
not be semantically equivalent, depending on the particular usages of those at-

5 Attribute values are address-sized integers (KIND=MPI_ADDRESS_KIND) in Fortran.



1 int MPIX_Type_marshal(const char *typerep, MPI_Datatype type,

2 void *outbuf, MPI_Aint outsize, MPI_Aint *num_written);

3 int MPIX_Type_marshal_size(const char *typerep, MPI_Datatype type,

4 MPI_Aint *size);

5 int MPIX_Type_unmarshal(const char *typerep, void *inbuf,

6 MPI_Aint insize, MPI_Datatype *type);

Listing 2. Marshalling and Unmarshalling Function Prototypes

tributes. Consider the case of marshalling a type, t1 followed by unmarshalling
the obtained representation into a second type, t2. If the marshalling system
näıvely fails to preserve attributes during this round trip, any attributes, such
as the dataloop from the MPITypes example, must be recalculated for t2 when
accessed later. If the attribute value is essential for correct operation and cannot
be recalculated, erroneous program behavior may occur. Therefore, any com-
plete MPI datatype marshalling solution should provide the capability to also
marshal a datatype’s attributes. Section 3 details one approach to maintaining
attributes despite serialization.

3 MPI Datatype Marshalling

Listing 2 shows the function prototypes of the marshalling and unmarshalling
functions. We modeled our prototypes on those of the packing and unpacking
functions (MPI_Type_{un}pack) defined by the MPI standard. MPIX_Type_marshal_
size returns an upper bound for the space required to marshal the given type.
MPIX_Type_unmarshal reconstructs the datatype. If the type passed to MPIX_Type_

marshal was a named type, such as MPI_INT, the same named type will be returned
when unmarshalling. The committed state of the returned datatype is undefined,
and the user is responsible for freeing the type if it is not a built-in type.

The representation parameter allows the user to choose which encoding will
be used to marshal the type definition. Our library currently defines three type
representations: internal, external, and compressed.

A datatype marshalled by using “internal” representation can be unmar-
shalled only by a process of the same parallel program as the marshalling pro-
cess. As such, datatypes using “internal” encoding cannot be stored on disk to
be retrieved later. The main advantage of using “internal” encoding is that it
enables MPI library specific optimizations. For example, an MPI implementa-
tion could use its internal type description as the “internal” encoding, avoiding
repeated calls to the MPI type construction and introspection functions to mar-
shal and unmarshal a datatype. In addition, any optimizations performed by
MPI_Type_commit could be captured and stored as well, making sure these opti-
mizations don’t need to be repeated for the unmarshalled type.

Similar to the “external32” data representation in MPI-IO, the “external”
type representation has a well-defined layout ensuring the marshalled type can
be unmarshalled by an MPI program using another MPI implementation. The



struct

int

contiguous

double

contiguous

double

(a) MPI type

combiner struct

blocklens
displacements

combiner contiguous
count

combiner named
int

double

double

count

itemcount

(b) external encoding

Fig. 2. External datatype encoding

“external” format is described in Section 3.1. The “compressed” format reduces
the space consumed by a marshalled type at the expense of additional computa-
tion to marshal and unmarshal the type. The “compressed” type representation
is described in Section 3.4.

3.1 External Type Representation

We chose to use the eXternal Data Representaion standard (XDR) [10] to
portably store a datatype description. The “external” type format follows a
top-down model: the MPI datatype is first broken down into its combiner and
associated data. For example, the type shown in Figure 2 has a top-level combiner
of MPI_COMBINER_CONTIGUOUS. The combiner is converted into an integer by using
a lookup table.6 The integer is stored in XDR encoding. MPI_Type_contiguous has
two more parameters: a base type and a count describing how many times the
base type is to be repeated. The count is stored using XDR. Next, the process
repeats but this time for the base type, essentially descending into the datatype.
Since no cycles are possible in MPI datatypes, this process will eventually end
at a leaf node of the datatype. As all derived datatypes are ultimately built
from predefined types, this leaf node must be a named predefined type or un-
named Fortran predefined type. Named types are marshalled simply by storing
the code for a MPI_COMBINER_NAMED, followed by an integer identifying the named
type, ending the recursion.

In general, each MPI datatype constructor will be marshalled to a combiner
and zero or more integers, addresses, and MPI datatypes. By defining a portable
way to store the combiner, integers, and addresses (which is provided by XDR),
and the set of named datatypes, using recursion, any MPI datatype can be
portably marshalled and unmarshalled.

3.2 Marshalling Type Names

Marshalling type names is relatively straightforward. The name can easily be
obtained using MPI_Type_get_name, and stored using the XDR representation for

6 This conversion is done because the actual value of MPI_COMBINER_CONTIGUOUS is not
specified by the MPI standard and thus might differ between MPI implementations.
The same is true for the value of the named datatypes. Such link-time constants
may not be used as labels in a C-language switch statement.



1 /* provides upper bound on buffer size */

2 typedef int MPIX_Type_marshal_attr_size_function(int keyval,

3 const char *canonical_name, const char *typerep,

4 MPI_Datatype type, MPI_Aint *size);

5 /* Marshals attribute value specified by keyval/canonical_name into

6 outbuf. Sets ((*num_written)=0) if outsize isn’t big enough. */

7 typedef int MPIX_Type_marshal_attr_function(int keyval,

8 const char *canonical_name, const char *typerep,

9 MPI_Datatype type, void *outbuf, MPI_Aint outsize,

10 MPI_Aint num_written);

11 /* responsible for setting attribute on type */

12 typedef int MPIX_Type_unmarshal_attr_function(

13 const char *canonical_name, const char *typerep,

14 MPI_Datatype type, void *inbuf, MPI_Aint insize);

15 int MPIX_Type_register_marshalled_keyval(int keyval,

16 const char *canonical_name,

17 MPIX_Type_marshal_attr_size_function *marshal_size_fn,

18 MPIX_Type_marshal_attr_function *marshal_fn,

19 MPIX_Type_unmarshal_attr_function *unmarshal_fn);

Listing 3. Attribute Marshalling Function Prototypes

character strings. When unmarshalling, any name found in the data stream is
reattached to the type handle using MPI_Type_set_name.

3.3 Marshalling Attributes

As discussed in Section 2.3, supporting marshalling and unmarshalling of at-
tributes is desirable and can often simplify libraries or optimize type handling.
Marshalling and unmarshalling attributes is not straightforward, however, as
there is no easy way to obtain the attributes associated with a datatype. The
MPI standard does not provide a function capable of retrieving the set of at-
tributes associated with a particular handle.

In addition, attributes have a user-defined meaning and cannot be portably
interpreted by a library. MPI_Type_dup, which must copy attributes to the new
handle, faces similar issues. The solution adopted by the standard requires that
when a new keyval is registered, two function pointers are provided. One is called
when an attribute needs to be copied, and one is called when an attribute needs
to be destructed (for example, when the object it is associated with is freed).

For each keyval that needs to be marshalled, a call to MPI_Type_register_

marshalled_keyval must be made. Since keyvals have limited process local scope,
their actual value cannot be marshalled. Instead, the library associates each
keyval with a canonical name. When unmarshalling the attribute, this mapping
is used to retrieve the correct local keyval for the attribute.

Listing 3 presents the C binding function prototypes for our proposed at-
tribute marshalling interface. It closely mirrors the datatype marshalling in-



terface; the corresponding function will be called by the datatype marshalling
system when a type is marshalled or unmarshalled.

In order to store attributes, the “external” representation described in Sec-
tion 3.1 is extended by following the type description with an integer indicat-
ing the number of attributes that follow in the data stream. Each attribute
is stored by storing its canonical name, followed by the data provided by its
MPIX_Type_marshal_function. Note that this data is not modified in any way by
the library and is stored as opaque XDR data. Therefore, the user is responsible
for serializing the attribute in a portable fashion.

3.4 Compression

A given base type might be used multiple times in constructing a derived data-
type. For example, the type shown in Figure 2 contains multiple copies of a type
composed out of two doubles. The marshalled representation of the complete
type, C, should ideally contain only one copy. Unfortunately, there is no easy way
to detect reuse of types. According to the MPI standard, MPI_Type_get_contents
returns handles to datatypes that are equivalent to the datatypes used to con-
struct the type. There is no guarantee that the returned handle will be the same
as the handle used in constructing the datatype.

Therefore, our library relies on a non-type-specific compression function (zlib)
to remove duplicate datatypes from the marshalled representation. Compression
can be requested by passing “compressed” as the requested encoding to the
marshalling functions.

4 Evaluation

We evaluated the marshalling and unmarshalling functions for a number of MPI
datatypes, using both “external” and “compressed” representations. We timed
10,000 iterations for each operation and reported the mean time per iteration.
Table 1 shows the results.

The first type evaluated (“named”) refers to any predefined MPI datatype.
As each predefined type is treated equally by the library, the numbers listed
are valid for any predefined type. The second type tested (“indexed”) is an
MPI_Type_indexed type selecting three contiguous regions from a byte array. The
third type is a complex derived datatype we captured from the HDF5 [3] storage
library. This type was created to describe the on-disk access pattern used when
accessing 5000 bytes of a dataset stored in the HDF5 file.7 This particular type
is 12 type constructors deep.

As expected, more complicated types take additional space and time to mar-
shal. The named and indexed types are cheaply serialized in the “external” for-
mat. In the case of the complex type, the “compressed” format consumes ≈ 8.6
times less space but takes ≈ 6.4 times as long to marshal.

7 The exact type can be found in the MPITypes distribution [7] as test/very_deep.c.



Table 1. Evaluation of marshalling and unmarshalling time and space consumption in
the prototype implementation.

Type

External Compressed

Size (B) Time (µs) Size (B) Time (µs)

Marshal Unmarshal Marshal Unmarshal

Named 8 < 1 < 1 14 76 1
Indexed 40 1 4 30 79 3
Complex 824 23 33 95 147 34

Our marshalling implementation is currently a prototype and has not been
extensively optimized. We expect that marshalling and unmarshalling times
could be reduced further with additional effort. The data presented in Table 1
are intended to provide a rough idea of marshalling performance.

5 Related Work

One focus of research in MPI datatypes has been the detection of mismatched
datatypes passed to MPI communication functions. Gropp introduced the idea of
using hashes for this purpose and defined a hashing function that maps the type
signature into an integer tuple [2]. Langou et al. extended this idea, propos-
ing alternative hashing schemes and examining the performance of these ap-
proaches [4]. Falzone et al used this approach in a library for detecting user
errors in the use of MPI collective communication calls [1], building on a simpler
scheme first presented by Träff et al. [11]. These hashes can be used, for instance,
to reference a datatype in a local cache, allowing a remote entity to query if a
datatype is already represented in the cache.

Another focus has been in the efficient processing of MPI datatypes. Ross et
al. describe the implementation of datatype processing used in MPICH2 [9] and
an external library for processing MPI datatypes [8]. The approach used is sim-
ilar to the one first described by Träff et al. [12]. Recently, Mir and Träff stud-
ied transpacking, or moving data between datatype representations [6]. These
approaches generally rely on a simplified, underlying datatype representation
with a type signature identical to the original user datatype. When these repre-
sentations are available, they allow marshalling of a simplified description of a
datatype, if envelope and contents information is not needed.

The Hierarchical Data Format version 5 (HDF5) [3] provides functionality
similar to the MPI datatypes (called datasets in HDF5), splitting the definition
of a dataset into a dataspace that describes the organization of elements and a
datatype that describes a single element, similar to an MPI struct. HDF5 stores
these descriptions persistently in HDF5 files, but it does not present an interface
for marshalling these descriptions to users.



6 Conclusions and Future Work

In this paper we have discussed the notion of MPI datatype equivalence, arguing
that the definition put forth in the standard is appropriate only for a certain
set of use cases. We have identified a number of other interpretations, and we
have provided an API and a library of functions that enable marshalling of MPI
datatypes in order to meet various levels of equivalence.

We intend to release this functionality for general use in the MPITypes li-
brary [8, 7]. We also plan to investigate using a combination of MPI attribute
caching and datatype hashing techniques [4] to optimize the case when types
are repeatedly serialized. Issues in the design and implementation of “internal”
marshalling schemes also merit further study. We intend to propose this interface
for the MPI-3 standardization process.

Acknowledgments

This work was supported by the U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

References

1. Falzone, C., Chan, A., Lusk, E., Gropp, W.: A portable method for finding user
errors in the usage of MPI collective operations. International Journal of High
Performance Computing Applications 21(2), 155–165 (2007)

2. Gropp, W.: Runtime checking of datatype signatures in MPI. In: Recent Advances
in Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 1908, pp.
160–167. Springer (2000)

3. HDF5. http://hdf.ncsa.uiuc.edu/HDF5/
4. Langou, J., Bosilca, G., Fagg, G., Dongarra, J.: Hash functions for datatype sig-

natures in MPI. In: Recent Advances in Parallel Virtual Machine and Message
Passing Interface. LNCS, vol. 3666, pp. 76–83. Springer (2005)

5. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 2.2 (September 2009), http://www.mpi-forum.org/docs/docs.html

6. Mir, F., Träff, J.: Constructing MPI input-output datatypes for efficient transpack-
ing. In: Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face. LNCS, vol. 5205, pp. 141–150. Springer, Berlin (September 2008)

7. MPITypes library. http://www.mcs.anl.gov/mpitypes/
8. Ross, R., Latham, R., Gropp, W., Lusk, E., Thakur, R.: Processing MPI datatypes

outside MPI. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface. LNCS, vol. 5759, pp. 42–53. Springer (September 2009)

9. Ross, R., Miller, N., Gropp, W.: Implementing fast and reusable datatype pro-
cessing. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface. LNCS, vol. 2840, pp. 404–413. Springer (October 2003)

10. Srinivasan, R.: XDR: External data representation standard (1995)
11. Träff, J., Worringen, J.: Verifying collective MPI calls. In: Recent Advances in

Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 3241, pp.
18–27. Springer (2004)

12. Träff, J.L., Hempel, R., Ritzdorf, H., Zimmermann, F.: Flattening on the fly: Effi-
cient handling of MPI derived datatypes. In: PVM/MPI 1999. pp. 109–116 (1999)


